图表神经网络(GNN)已被广泛用于学习图形结构数据的矢量表示,并实现比传统方法更好的任务性能。 GNN的基础是消息传递过程,它将节点中的信息传播到其邻居。由于该过程每层进行一个步骤,因此节点之间的信息传播的范围在下层中很小,并且它朝向更高的层扩展。因此,GNN模型必须深入地捕获图中的全局结构信息。另一方面,众所周知,深入的GNN模型遭受性能下降,因为它们丢失了节点的本地信息,这对于良好的模型性能至关重要,通过许多消息传递步骤。在本研究中,我们提出了用于图形级分类任务的多级注意汇总(MLAP),这可以适应图表中的本地和全局结构信息。对于每个消息传递步骤,它具有注意池层,通过统一层方格图表示来计算最终图表示。 MLAP架构允许模型利用具有多个级别的本地图形的结构信息,因为它在由于过度的过天气丢失时保留了层面信息。我们的实验结果表明,与基线架构相比,MLAP架构提高了图形分类性能。此外,图表表示的分析表明,来自多个级别的地方的聚合信息确实具有提高学习图表表示的可怜的潜力。
translated by 谷歌翻译
Quantum Kernel方法是量子机器学习的关键方法之一,这具有不需要优化的优点,并且具有理论简单。凭借这些属性,到目前为止已经开发了几种实验演示和对潜在优势的讨论。但是,正如古典机器学习所在的情况一样,并非所有量子机器学习模型都可以被视为内核方法。在这项工作中,我们探讨了具有深层参数化量子电路的量子机器学习模型,旨在超出传统量子核法。在这种情况下,预计表示功率和性能将得到增强,而培训过程可能是丢储Plateaus问题的瓶颈。然而,我们发现,在训练期间,深度足够的量子电路的参数不会从其初始值中移动到初始值,从而允许一阶扩展参数。这种行为类似于经典文献中的神经切线内核,并且可以通过另一个紧急内核,量子切线内核来描述这种深度变化量子机器学习。数值模拟表明,所提出的Quantum切线内核优于传统的Quantum核心核对ANSATZ生成的数据集。该工作提供了超出传统量子内核法的新方向,并探讨了用深层参数化量子电路的量子机器学习的潜在力量。
translated by 谷歌翻译